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In quantum computing, parametrized entangling gates have recently gathered significant interest.
Parameterized gates can be shorter in duration (compared to a maximally entangling gate) and can
facilitate shallower circuit syntheses. Fast and efficient calibration of a discrete set of shorter, high
fidelity fractionally entangling gates and the construction of optimal circuit synthesis schemes that
leverage the richer gate set are open problems that are addressed in this work. We develop a novel
gate calibration technique that is highly resource efficient in terms of both QPU and CPU time. It
relies on building a faithful model for the gate Hamiltonian using a set of offline characterization
experiments. Our specialized compiler features a unitary synthesis algorithm that can use such gate
Hamiltonian models to synthesize circuits with shorter depths and higher fidelity. We demonstrate
the power of this fully automated technique experimentally on cross resonance gates on IBM Quan-
tum devices by augmenting the existing entangling gate set with shorter duration efficient gates.
Our approach introduces overhead of only 3 min of QPU time and 30s of classical post-processing
time. Algorithmic benchmarking of these techniques shows over 3 times higher fidelity of the quan-
tum Fourier transform algorithm for up to 26 qubits and up to 9 times lower mean-square-error
(MSE) in the estimation of expectation values in a trotterized Hamiltonian simulation of the 1-D
transverse field Ising model on 25 qubits.

I. INTRODUCTION

An essential component in quantum information pro-
cessing is a layer of abstraction that maps primitive in-
structions determined by the physical system (pulses) to
a set of easily programmable abstract operations (logical
gates). This mapping relies on the native gate set: the
set of all logical operations natively available on a hard-
ware device. A gate set is universal when it can be used
to implement any unitary to arbitrary precision [1–3].

However, not all universal gate-sets are equivalent in
practice; the compilation and execution of a quantum al-
gorithm can vary significantly for different gate sets. This
is especially important when one considers the time du-
ration of these gates and their characteristic errors. On
contemporary quantum computing platforms, gate sets
typically include a number of single-qubit rotations and
a single entangling two-qubit gate. There has been re-
markable progress in designing fast entangling two-qubit
gates, while suppressing parasitic coherent errors, using
a wide range of entanglement generating interactions [4–
10].

There is mounting evidence that more expressive gate
sets (including multiple entangling gates, beyond the
minimum required for universality) enables the execu-
tion of near-term algorithms with higher fidelity. This
has led to the design of novel entangling gates and cali-
bration techniques, notably in the development of para-
metric entangling gates [11–14]. These families of para-
metric entangling gates generally have shorter durations,
which affects the execution fidelity of the circuit in two
ways: Firstly, a reduction in the overall circuit dura-
tion that arises from implementing shorter gates should
increase circuit fidelity, especially for deep circuits that
approach the finite qubit coherence limit. Secondly, a
favorable choice of entangling gates in the gate set may

allow algorithms to be implemented via shorter gate se-
quences (i.e. fewer gates), which leads to a reduction in
gate errors accumulated throughout the circuit.

However, several technical challenges make it difficult
to construct a richer entangling gate set, given the con-
straints imposed by a physical device. Calibrating a
two-qubit interaction to a high-fidelity target unitary
is resource-intensive [15–19]. Typically, several time-
varying control parameters that characterize the pulse
profile(s) need to be carefully tuned to achieve the tar-
get unitary. Even when calibration protocols yield high-
fidelity gates, it is crucial that the calibration time bud-
get remains minimal [20]. The temporal stability of the
calibration under device parameter drift imposes a fi-
nite useful lifetime for any calibrated gate [21]. Ideally,
calibration routines should consume a minimal portion
of the calibration lifetime, since it is desirable that de-
vice time be mostly dedicated to execution of algorithmic
jobs. For continuous-parameter entangling gates, there is
a trade-off between the fidelity gains due to shorter gate
sequences and the error incurred due to inaccurate inter-
polation of control parameters.

From the perspective of quantum compiler design,
there is a need to build techniques that can leverage the
advantages that are offered by a richer gate set. Most
contemporary compilers [22–24] perform the synthesis
of generic quantum circuits using standard entangling
gates. Initial steps towards compiling around scaled en-
tangling gates were taken recently in [25, 26]. There has
also been recent work in outlining sets of circuit synthesis
schemes that can leverage such gates [27, 28].

In this work, we introduce a novel approach to gener-
ating and deploying an additional discrete set of frac-
tionally entangling gates. Our approach to diversify-
ing the entangling gate set is based on a shift of per-
spective: rather than calibration, we focus on compiler-
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FIG. 1: (a)-(b) Two different schemes for gate design depicted on a section of the SU(4) Weyl chamber. (a) A
calibration based scheme, the target unitary (green point) in this case being a (maximally entangling) CX gate. A
pulse optimization routine (closed or open loop) is performed to yield an approximate (noisy) realization of the
unitary (red point). Errors and inaccuracies in the procedure eventually can lead to a noisy gate definition being
constructed. (b) A characterization based scheme for fractionally entangling gates, where a pulse is loosely designed
to generate a unitary within a bounded region (green), which represents the class of models being considered for its
generating Hamiltonian. Off-line characterization of the model allows a precise determination (purple point) of its
co-ordinates ceff, and using local rotations the pulse is converted into a gate definition E (ceff) which can be used for
unitary synthesis. (c) Synthesis of arbitrary 2-qubit unitary blocks in the Weyl chamber: a 2-qubit unitary Usynth

(green point) needs to be synthesized via a set of basis gates. Steering of these trajectories is achieved by
interleaving single-qubit gates between up to three repetitions of a 2-qubit gate. In the red trajectory, a sequence of
three CX gates are used to reach the target Usynth while in purple a sequence of 3 E (ceff) gates (which may be
different) are steered to the target Usynth.

understandable characterization. The development of
gate characterization techniques such as Gate Set Tomog-
raphy is an active area of research [29], and in this work
we build on existing techniques that fall broadly under
Hamiltonian tomography, which allow us to build faith-
ful models of the generating Hamiltonian corresponding
to the unitary entangling gate [8, 30–32].

Rather than calibrating a pulse to produce a partic-
ular desired target unitary, we instead send an approx-
imately calibrated pulse to the quantum device, which
is expected to realize the generating Hamiltonian of the
unitary within a known bounded range. We then per-
form an efficient characterization procedure to precisely
identify the corresponding unitary operation that is re-
alized. Such off-line characterization, as opposed to on-
line closed-loop calibration, is highly resource efficient
in terms of both QPU time and classical postprocessing
time. The result of this procedure is generalized gate def-
inition, i.e. a map from the pulse to the unitary which
includes the contribution of terms that may typically be
called coherent error terms. However, we make no at-
tempt to calibrate these errors towards zero; instead, we
precisely measure the relevant Hamiltonian terms. For
deployment of these gates in quantum algorithms, we rely
on compilation using these gate definitions in addition to
existing available gates. In particular, our compiler fea-
tures a unitary synthesis algorithm that is able to use
such gate definitions efficiently to construct circuits.

In Figure 1, we depict this procedure within the math-
ematical framework of locally equivalent gates. Each 2-
qubit unitary can be assigned to a point with canoni-
cal coordinates (c1, c2, c3) in the Weyl chamber, where a
point represents an equivalence class of locally equivalent
gates. Maximally entangling gates, such as CX gates and
SWAP gates, are special edge points in this space with
coordinates (π/2, 0, 0) and (π/2, π/2, π/2), respectively.
A traditional procedure for fine-tuning the calibration of
a gate manipulates pulse level instructions to realize an
ideal target unitary with measured deviations from the
target unitary coordinates from non-local coherent gate
errors. Quantum control techniques such as and closed-
loop optimization attempt to decrease these deviations
with each iteration, as in Figure 1(a). However, for frac-
tionally entangling gates, one only needs to determine
the coordinates corresponding to the coarsely calibrated
pulse schedule. These coordinates have a bounded range
of expected values that can be determined from a unitary
model of the pulse schedule with a bounded set of model
coefficients, as in Figure 1(b). Our approach allows for
the synthesis of target unitaries using a minimal discrete
sequence of these characterized gates, interleaved with
single-qubit gates. These characterized gates definitions
are useful once the set of their coordinates, ceff, is de-
termined. To realize a unitary target within a quantum
algebra, a set of steering single-qubit gates is interleaved
with up to three repetitions of the characterized gate, as
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in Figure 1(c).
Benchmarking of these gates is performed via an eval-

uation on algorithmic tasks, since the performance im-
provements our non-standard gate definitions offer are
intimately tied to circuit contexts that appear in the al-
gorithm and these are not standard Clifford gates. Gate
fidelity measures such as such as interleaved Randomized
Benchmarking (iRB) [33] are not used, as they tend to
overlook the contribution of coherent errors terms such as
crosstalk, which are precisely the kind of errors that are
suppressed by our protocol and are individualistic rather
than holistic measures.

The manuscript is organized as follows: in Section II,
we describe the construction of control pulses used to
create the gates used in this work, followed by Hamil-
tonian model building techniques. In Section III we de-
scribe the procedure to build a gate definition that can
be utilized by our compiler. We also describe a set of
synthesis motifs that can use such gate definitions to
compile shorter and higher-fidelity circuits. Finally in
section IV, we demonstrate the power of this fully auto-
mated technique. In particular, we present algorithmic
benchmarking on IBM Quantum devices, with enriched
gate-sets. We observe a >3X higher success probability
of the quantum Fourier transform algorithm for up to
26 qubits (compared to only using default available cali-
brated gates) and up to 9 times lower mean square error
(MSE) in the estimations of expectation values in a trot-
terized Hamiltonian simulation of the 1D transverse field
Ising model on 25 qubits.

II. PULSE CONSTRUCTION AND EFFECTIVE
HAMILTONIAN LEARNING

An important challenge in improving 2-qubit gate fi-
delities across superconducting qubit architectures is sup-
pressing coherent noise. The cross-resonance (CR) inter-
action [34] used by the IBM Quantum devices we use
for our experimental work is realized in fixed frequency
transmons using microwaves to drive the qubit 0 (con-
trol) resonantly at the frequency of the target qubit 1. In
addition, qubit 1 is resonantly driven with a cancelation
tone to cancel coherent single-qubit errors on the target.
In the regime of operation, the transmons are weakly an-
harmonic and weakly driven; as a result, in addition to
the desired interaction in the 2-qubit subspace, interac-
tions between the higher energy levels of the transmon
necessarily take place. An effective Hamiltonian descrip-
tion incorporates these interactions by projecting them
onto the relevant 2-qubit subspace. To arrive at such
a description, one can use Schriefer Wolfe Perturbation
theory [35] in the common drive frame of the target and
control to get:

Heff (ωab) =
1

2
(ωzxZX + ωzyZY + ωzzZZ (1)

+ωixIX + ωiyIY + ωizIZ + ωziZI)

The coefficients in (1) typically depend non-linearly
on the control parameters (such as the drive amplitude).
The Echoed Cross Resonance (ECR) gate implements the
unitary generated by (1) while exploiting an echo scheme
on the control qubit to cancel unwanted coefficients [8]:

ECRθ = e−itθ/2Heff(ωab) (XI) eitθ/2Heff(ωab) (XI) (2)

We remind the reader that to implement a CX gate,
the ideal gate unitary that can be used is ECRπ/2 =

e−iπ/4ZX . In order to calibrate to this target unitary,
control parameters in (2) need to be tuned such that
tπ/2 ωzx = π/2 and all other coefficients are zero.
This is a single point in a family of pulse schedules

parametrized by θ, obtained by scaling the area of the
calibrated echoed cross-resonance pulse provided by the
backend [25, 26]. Scaling according to tθ = 2θ

π tπ/2 gives

rise to the ideal gate unitary e−iθ/2ZX , under the under-
lying assumptions that there are no nonlinearities (ωab

stay the same while scaling the pulse) and the initial
pulse was calibrated with no errors.
With the goal of taking into account coherent errors in

the gate definition itself, we demonstrate our method by
directly scaling the CR pulse provided by the backend as
well as eliminate the echo structure to get the Scaled-CR
gate (SCR):

SCRθ = e−itθHeff(ωab) = e−iHeff(νab) (3)

For convenience, we switch to dimensionless units where
tθωab = νab. Since this pulse is constructed by deform-
ing a calibrated backend ECR pulse with tπ/2, this cal-
ibration data is implicitly used in the definition (3), via
tθ = 2θ

π tπ/2.
SCRθ has been directly defined in terms of its gener-

ating Hamiltonian Heff (νab). The ideal unitary imple-
mented by SCRθ, is at this point, unknown since the
pulse it is generated by differs from its original calibra-
tion. The unitary will only be determined after the pa-
rameters νab have been learned via a set of characteriza-
tion experiments.
The design principle we use is that characterization is

easier than calibration, in terms of both QPU and classi-
cal resources. The non-linear dependence of the realized
unitary on control parameters is no longer problematic,
since we do not need to tune them via closed-loop opti-
mization to reach a particular target value of νzx (while
tuning the remaining νab to zero). Instead, our proto-
col considers the set νab to be learnable parameters that
are experimentally reconstructed from a predefined set
of Hamiltonian characterization experiments. An effec-
tive Hamiltonian analysis provides the set of terms that
should be included in the model Heff (νab) to describe the
unitary evolution of the gate as well as a good set of ini-
tial points and bounds on the parameters νab. The only
requirement is that: the measured effective Hamiltonian
should only be in the 2-qubit subspace defined by our
ansatz (1), which is an experimental consistency check.
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FIG. 2: (a - d) The set of Hamiltonian tomography sequences used to determine the learnable parameters νab that
describe the scaled cross resonance (SCR) pulse/gate defined in (3). (e) Fitting the model described by Eq (1) to
the data generated by circuit (a) with RMSE 0.02. (f) The distribution of final converged costs (RMSE) of fit
between data and model (including all circuits (a - d) for all 144 edges between coupled qubits of the 127 qubit
device ibm brisbane. A majority (85%) of the SCR gates model optimization costs converge to an RMSE below an
empirically set threshold. The converged parameters along with the SCR pulse are now to be used to construct a
new basis gate XX (π/4 + ϵ) using Algorithm 2

Conventionally, many of the coefficients such as νzz
would be identified as coherent error terms (cross-talk).
However, in our protocol, these terms are coefficients of
a model of the generating Hamiltonian for the new uni-
tary gate. Characterization, rather than calibration, is
sufficient only when the compiler can synthesize opera-
tions around such non-standard basis gates. The proce-
dure to use non-standard unitary gate definitions (such
as (3) with arbitrary coefficients νab) to synthesize quan-
tum circuits is described in detail in III. While we focus
on the particular entangling interaction described by (1)
which was used for the experiments in this work, the
same principle is applicable for a different entangling in-
teraction starting from a different effective Hamiltonian
description as a starting point.

To perform model learning of an ansatz for Heff, we
tailor a set of error amplification sequences. Fig 2(a-d)
depicts the circuits that are used to measure the Hamil-
tonian coefficients νab for the pulse defined in (3). The
sequences are constructed by repeating the gate N times
and measuring Rabi-like oscillations on both the target
and control qubit. Error amplifying echoes are inter-

Algorithm 1 Model Learning

1: Construct pulse SCRθ by deforming a pre-calibrated gate
with a model ansatz (3).

2: Execute pre-determined set of characterization sequences
2 (a – d)

3: Compute expectation values of observables OE
exp from ex-

perimental data.
4: Determine νab minimizing C = |OE

exp −OE
model(νab)|2.

5: If C ≤ threshold, use νab to start Algorithm 2.

leaved into the repetition sequence to selectively amplify
coefficients. Measurement of each circuit provides a set of
two probe observables ⟨Oi⟩. In Appendix D we describe
the conventions used to map the set of probe observables
⟨Oi⟩ to experimental measurements. The properties of
the set of sequences that make them a favorable choice
are that they are minimal and complete to reconstruct
the full set of Hamiltonian coefficients νab. These se-
quences are highly sensitive for the parameters that are
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expected to be small, ie. (νzy, νiy, νzz, νiz). The am-
plification in the corresponding Oj increases with N as
⟨Oj (N)⟩ ∼ |N |νab.

These circuit sequences are executed on all qubit-pairs
on the device, with each pulse to be added to the gate-
set being parameterized by a target angle θ. The raw
experimental probability distributions are obtained given
a set of experimental observable expectation values Oexp

j
that are calculated offline. Optimization of the model
parameters νab is done to minimize the cost function
C =

∑
j |O

exp
j − Omodel

j (νab)|2. If this cost converges to
a value below an empirically set threshold, a new gate is
added to the gate-set. This procedure is fast and highly
parallelized, with the optimization being performed via
the CMA-ES algorithm implemented in Q-CTRL Boul-
der Opal [36]. To minimize the total number of exper-
iments needed to characterize all 2-qubit pairs on the
device, characterization experiments for multiple 2-qubit
pairs is performed simultaneously. Viewing each experi-
ment that characterizes a 2-qubit pair as an edge-coloring
of the connectivity graph of the device, the minimum
number of independent experiments that are needed to
cover all connected qubit-pairs is the minimum edge col-
oring of the device topology (3 for the heavy-hex connec-
tivity). In Appendix E we describe in detail the break-
down of the QPU resource usage which allows this pro-
cedure to add a new gate to the full device in under 3min
of QPU time. In Figure 2(e) we show experimental data
and fits of a successful instance of the model learning
procedure and in Figure 2(f) we show the results of a
device-wide model learning procedure that successfully
characterizes a new pulse SCRπ/4 for 85% of the 144
2-qubit pairs on the device IBM Brisbane. The model
learning procedure described in this section is summa-
rized in the form of Algorithm 1 which is the first step
that is to be executed for each new gate to be added to
the gate set.

III. COMPILER ARCHITECTURE DESIGN
FOR EFFICIENT GATES

So far we have focused on techniques that allow us
to construct pulses that give rise to non-standard frac-
tionally entangling gates, and characterization routines
that return parameters νab that describe the generating
Hamiltonian of the corresponding unitary. We now shift
our focus to the question of using the gate characteriza-
tion data to efficiently synthesize a generic circuit. This
is done in two parts, first the unitary specified by several
parameters νab generated by the non-standard pulse is
transformed by acting with only single qubit gates before
and after the pulse, into a simpler unitary defined by a set
of 3 parameters c1, c2, c3, which we call a new basis gate.
This is done without making any changes to the pulse
waveform that was characterized at the time of circuit
compilation, similar to a stored gate calibration. In the
second part we have the following objective: given such a

discrete set of 2-qubit, how does one synthesize a desired
unitary using short sequences of such gates, when it is fea-
sible to do so. From a practical standpoint, in addition to
being easier to calibrate and compile, single qubit gates
typically have an order of magnitude higher fidelities and
shorter durations compared to 2-qubit gates. To lever-
age this effectively, we use the appropriate mathematical
structure that captures the map between local control
parameters and non-local control parameters when con-
sidering sequences of 2-qubit unitaries interleaved with
1-qubit unitaries. The control theory of two-qubit uni-
taries and an analysis of local and non-local properties of
2-qubit gates was developed in [37],[38], whose essential
components we briefly review below.

We introduce the following notation for a useful ele-
mentary 2-qubit unitary

Can (c1, c2, c3) = e−i/2(c1XX+c2Y Y+c3ZZ) (4)

On any 2-qubit unitary U , one can perform a Cartan or
KAK decomposition which decomposes it into a non-local
unitary and 4 local single-qubit unitaries kL/R, k̄L/R

U =
(
kL ⊗ k̃L

)
Can (c1, c2, c3)

(
kR ⊗ k̃R

)
(5)

The notation described in (4) has been used and
(c1, c2, c3) are called the Cartan or canonical coordinates
of U . When a subroutine is called to perform a KAK
decomposition on the unitary U , it returns the decom-
posed form written in (5), with the set of single qubit

gates kL/R, k̃L/R being determined and a unique set of
ci that follow the ordering π/2 ≥ c1 ≥ c2 ≥ c3 ≥ 0 or
π − c1 ≥ c2 ≥ c3 ≥ 0.

Manipulating trade-offs between local and non-local
components of 2-qubit unitaries becomes easier when one
defines a notion of local equivalence. It captures the idea
that a 2-qubit unitary U1 can be transformed into a par-
ticular class of unitaries U by left or right multiplication
of arbitrary 1-qubit gates. All the unitaries U it can be
transformed (locally rotated) into in this way are equiv-
alent to it. More formally, U is locally equivalent to U1

if there exist single qubit gates k such that

U =
(
kL ⊗ k̃L

)
U1

(
kR ⊗ k̃R

)
(6)

A local invariant is a property of a unitary that does
not change when it is transformed via local rotations.
This property is unchanged when U1 is transformed into
any of the different unitaries U that one gets by picking
any set of k in (6). [38] provides a formal definition of a
set of local invariants Ip as follows: U1 is locally equiva-
lent to U if and only if Ip(U) = Ip(U1) for all Ip in the
set. The two local invariants I1, I2 (which give 3 real
numbers) for 2-qubit unitaries are stated in (A2).
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FIG. 3: (a) The canonical coordinates of a constructed basis gate set consisting of XX(c
(1)
eff ) and CX gates, depicted

as purple and red points respectively on the base of the Weyl tetrahedron. (b) The feasible region of coordinates

that can be synthesized using 2 applications of XX(c
(1)
eff ) (dark purple). The feasible region of coordinates that can

be synthesized using 1 application of XX(c
(1)
eff ) and 1 application of a CX gate (light purple). The feasible region of

coordinates that can only be synthesized using 2 application of a CX gate (red). (c) A target unitary with

coordinates (c1, c2, c3) is synthesized using (1) a sequence of three XX(c
(1)
eff ) gates, or (2) a sequence of three CX

gates (2).

A. Constructing a gate definition using
characterization data

Before describing the procedure to construct a new ba-
sis gate for the pulse SCRθ using it’s model, we first
describe the general method to construct a useful gate
definition for a generic entangling pulse from it’s unitary
model e−i/2 Heff(νab). The utility of this method lies in
being agnostic to the details of the entanglement gener-
ating mechanism used and allowing creation of fractional
gates by deformation of existing control parameters (such
as the pulse scaling rule in (3)). The underlying as-
sumption is that a unitary model constructed from a set
of characterization experiments, does faithfully capture
how the fractional gate acts within the 2-qubit subspace.
While the choice of model ansatz ie. the set of terms νab
that are allowed in the generating Hamiltonian of the uni-
tary, are constrained by the underlying device physics, we
let U be any 4-dimensional unitary matrix. The model is
now parameterized by the coefficients of Heff expanded
in the full 2-qubit Pauli basis, with σ0 denoting the de-
noting the Identity and σi denoting the Pauli matrices,

Heff (νab) =

3∑
a,b=0

σa ⊗ σb νab (7)

There can be at most 16 parameters νab contributing to
this model, however only certain combinations of these
parameters capture the non-local properties of the gate.
Only those combinations of model parameters are essen-
tial, if one needs to synthesise other non-local target uni-
taries using repeated applications of the gate described
by the model. Performing a KAK decomposition (5) on
the model unitary allows the expression of these parame-
ters in terms of the canonical coordintaes c1, c2, c3, which

uniquely capture the non-locality of the gate.

e−i/2Heff(νab) =
(
kL ⊗ k̃L

)
Can(c1, c2, c3)

(
kR ⊗ k̃R

)
(8)

The task of explicitly calculating all quantities on the
right-hand side can be done numerically [39] to compute
the 4 single qubit unitary matrices k and the 3 real pa-
rameters (c1, c2, c3). Acting with the inverses of k on
both sides above leads to the following gate definition:

Can(c1, c2, c3) :=
[
k−1
L ⊗ k̃−1

L

] [
e−i/2H̃eff

] [
k−1
R ⊗ k̃−1

R

]
(9)

This basis gate definition is to be interpreted in the
following manner: the unitary matrix corresponding to
Can(c1, c2, c3) is computed in (8) using the learned
model Heff (νab) of the unitary generated by a non-
standard 2-qubit entangling pulse (such as a scaled pulse
SCRθ). The physical pulse waveform that generates the

unitary is stored as the pulse waveform object
[
e−i/2H̃eff

]
which is sandwiched between the single qubit gate objects[
k−1
R ⊗ k̃−1

R

]
and

[
k−1
L ⊗ k̃−1

L

]
, with the single qubit ro-

tation angles calculated using (8). Importantly, the com-
piler interprets the appearance of Can(c1, c2, c3) during
different transpilation stages as follows: (i) At the stage
of circuit synthesis, it is interpreted as a unitary matrix
computed in (8) that is part of an available basis gate set
that can be used for circuit synthesis. (ii) At the stage
of pulse scheduling, it is interpreted as a composite gate
object, with the replacement rule (9) being executed. Fi-
nally, circuit depth is optimized by letting all single qubit

gates surrounding the pulse waveform
[
e−i/2H̃eff

]
, merge

with neighboring single qubit gates, followed by resyn-
thesis of only the merged single qubit gates.
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Algorithm 2 Synthesis using efficient gates

Require: (Model, Pulse): (Heff(νab), SCRθ)
Require: Target unitary: Ublock

1: Get ceff and kL/R,k̃L/R by appplying (8) to Heff(νab)
2: Define basis gate XX(ceff) by unrolling SCRθ according

to (10).
3: Repeat for next pair (Heff(νab), SCRθ)
4: Apply (12) to Ublock to get c1, c2, c3.

5: Synthesize c1, c2, c3 using minimum number of XX(c
(j)
eff )

with minimum c
(j)
eff .

6: Consolidate and re-synthesize single qubit basis gates.

We now describe in more detail the case of experi-
mental interest from the previous section, ie. the pulse
SCRθ (νab). The operation (8) is performed on its model
e−i/2Heff(νab) to calculate the set of single qubit matrices k
and (c1, c2, c3) = (ceff, 0, 0). These determined values are
now used to construct a gate definition according to (9):

XX(ceff) =
(
kL ⊗ k̃L

)−1

SCRθ (νab)
(
kR ⊗ k̃R

)−1

(10)

The left-hand side is precisely Can(ceff, 0, 0), but has
been denoted with the more identifiable 2-qubit rotation
XX(ceff). Importantly, any ansatz that has the form (1)
necessarily has c2 = c3 = 0 and ceff related to its model
parameters via

c1 = ceff =
√
ν2zx + ν2zy + ν2zz (11)

These relations are obtained readily by observing that
XX(ceff) is locally equivalent to the unitary model
e−i/2Heff(νab) since both sides are only related by single
qubit rotations. As a result they must have the same
values of the local invariants (A2), and acting with the
local invariant I1 on both sides gives these equalities.

B. Synthesizing circuits using efficient gates

With a discrete set of newly constructed basis gates
added to the gate-set, the objective is to synthesize
generic circuits using them. We assume we are given as
input an abstract circuit which is broken into a sequence
of two-qubit unitary blocks. Each Ublock is taken to be
a sequence of uninterrupted operations on the same pair
of qubits and is an element of SU(4), ignoring a global
phase that can be tracked separately. Typically, a cir-
cuit can comprise of products of various different Ublock

on different qubits at different circuit depths (such as
the Inverse QFT algorithm) or repetitions of the same
Ublock repeated on different qubits (such as in trotterized
Hamiltonian simulations).

The problem of synthesis of a generic Ublock is first re-
duced to the problem of synthesizing only its non-local

components (t1, t2, t3), since the required single qubit
gates k can be determined by applying a KAK decompo-
sition on the block:

Ublock =
(
kL ⊗ k̃L

)
Can(t1, t2, t3)

(
kR ⊗ k̃R

)
(12)

This is an important first step because Can(t1, t2, t3) is
an easier target unitary for synthesis by virtue of being
described completely by only 3 parameters.
Synthesizing Can(t1, t2, t3) using a sequence of non-

standard pulses with only models of their corresponding
unitaries can be difficult, especially when each unitary
is described by a large number of parameters (products
of 3 such arbitrary gates can have up-to 48 parameters).
Single qubit gates need to be interleaved into a template
circuit, and their gate parameters optimized to make the
template circuit unitarily equivalent to the target uni-
tary. This contributes heavily to the complexity of the
task.

Logical and numerical simplifications are made for the
task of unitary synthesis of Can(t1, t2, t3), by ensuring
the entangling basis gate set only has canonical gates.
For the efficient gates that have been constructed from
model definitions, the procedure of constructing of con-
structing a gate definition already adds to the gate-set
canonical gates, as described in (8) and (9). Additionally,
existing pre-calibrated gates that are required to com-
plete the gate-set, such as a CX gate are also added to the
basis gate-set in the canonical form, ie. Can(π/2, 0, 0)
using single qubit gates calculated via the same replace-
ment rules. This forms the over-complete, discrete en-
tangling basis gate-set with fixed parameters, that is
available for any 2-qubit pair on the device. The sin-
gle qubit basis gates are allowed to implement arbitrary
single unitaries using 3 continuous parameters. In prac-
tice, after Ublock has been synthesized, these are further
decomposed into discrete single qubit rotations during
re-synthesis of only single qubit gates, to ensure virtual
Z gates are used.

To reduce the complexity of this task further, an im-
portant observation is that one only needs to to synthe-
size a locally equivalent circuit to Can(t1, t2, t3). This is
sufficient because any unitary A that is locally equivalent
to the target unitary Can(t1, t2, t3) can be KAK decom-
posed to yield the necessary single qubit gates that make
it unitarily equivalent to the target. In other words, if
any unitary A with the same canonical coordinates as
the target is found, performing a KAK decomposition
A = (uL⊗ ūL) Can(t1, t2, t3) (uR⊗ ūR) provides 4 single
single qubit gates uL/R, ũL/R. Acting with the inverse

gates (u−1
L ⊗ ū−1

L ) on the left of both sides and similarly

with (u−1
R ⊗ ū−1

R ) on the right, one arrives at a circuit
that is unitarily equivalent to the target.

To analyse the canonical coordinates of products of
canonical basis gates such as Can(a1, a2, a3), it is help-
ful to geometrically interpret each one as a 3-vector.
Each single qubit gate that needs to be inserted is to be
thought of as a control parameter that rotates or scales
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such a vector. The problem of synthesis of the target
unitary Can(t1, t2, t3) can then be framed as determin-
ing the appropriate rotations and or scalings that need
to be implemented on each 3-vector using single qubit
gates, such that the product of the sequence of unitaries
finally has the target coordinates (t1, t2, t3).

The important base case to consider, is using 2 entan-
gling gates to synthesize a generic target unitary. Once
such a the sum rule or motif has been determined, it can
be repeatedly used if needed. This can be stated as find-
ing the set of single qubit gates s, s̃ inserted between two
basis gates such that the interleaved product is locally
equivalent to the target:

Can(t1, t2, t3) ≡ Can(a1, a2, a3)(s⊗ s̃)Can(b1, b2, b3)
(13)

We have used ≡ to emphasize that both sides only need
to be locally equivalent and not unitarily equivalent, and
we use this notation where only this weaker equivalence
is needed.

The goal is to express the set of locally invariant quan-
tities {Ik} of a sequence of basis gates that is to be
used for synthesis, parametrically in terms of the rota-
tion angles of the interleaved single qubit gates. This
parametrized set {Ik(s, s̃)} must be equal to the set eval-
uated solely on the target coordinates (t1, t2, t3), which
gives a set of equalities. Any single qubit gate angles that
satisfy the complete set of equalities, are valid solutions
and can be used for synthesis. The target coordinates
for which it is possible to find any (real) solutions for
the single qubit gate angles, are referred to as feasible
coordinates. These are the set of target coordinates that
can be synthesized using a chosen sequence or motif of
entangling gates.

To use the set of local invariants parametrically, one
needs an efficient construction of these invariants for se-
quences of canonical gates with interleaved local gates.
The magic matrix Q defined in (A1) is useful for con-
structing these invariant quantities as it maps local uni-
tary transformations to real orthogonal transformations.
The generators of local transformations acting on the
2-qubit subspace are the generators of a pair of sin-
gle qubit rotations generated by the Pauli matrices,
ie. iσi/2 ⊗ I and I ⊗ iσi/2 for i ∈ {1, 2, 3}. These
are mapped to the generators Q†(iσi/2 ⊗ I) Q = Li

and Q†(I ⊗ iσi/2) Q = L̃i which satisfy the commu-

tation relations [Li, Lj ] = ϵijk Lk, [L̃i, L̄j ] = ϵijk L̃k and

[Li, L̃j ] = 0. The 6 generators Li, L̃i are purely real
with purely real structure constants (ϵijk) and generate
4 dimensional real orthogonal transformations. The un-
derlying mathematical fact that has been important in
studying local invariants [37] that is being used here is
that there exists a decomposition of the 2-qubit su(4)
algebra into so(4) + i p, where p is real and symmetric
while so(4) is real and antisymmetric.

The second transformation which simplifies the task
maps all 6 generators Li, L̃i in the 4 dimensional defining
representation to the adjoint (or regular) representation

of this algebra. This 6-dimensional representation has
as basis vectors the generators Li, L̃i themselves and is
equipped with the Cartan-Killing inner product ⟨LiLj⟩ =
−Tr(LiLj) = δij and ⟨L̃iL̃j⟩ = −Tr(L̃iL̃j) = δij .
The adjoint representation is useful because local ro-

tations are realized in the form of a 6 dimensional block-

diagonal matrix S = exp
(
γ n · L+ γ̃ ñ · L̃

)
. Here we

denote the finite rotation angle as γ, a unit normal vec-
tor n, and the dot product denotes n · L =

∑3
i=1 Li ni.

The same conventions are used for the rotation param-
eters ñ and γ̃ corresponding to L̃i. The block diagonal
rotation matrix in terms of these rotation parameters is

S =

[
exp (γ n · L) 03×3

03×3 exp
(
γ̃ ñ · L̃

)]
(14)

To express the canonical gates these matrices trans-
form in the adjoint representation, we first look at the ex-
ample of the canonical gate Can(t1, t2, t3) defined in (4).

In the basis spanned by Li, L̃i, the exponent can be
written in terms of a purely real and symmetric matrix

T =
∑3

i=1 ti

(
LiL̃i + L̃iLi

)
. Using following notation

for 3 by 3 diagonal matrices,[
cos( t⃗ )

]
3×3

:= diag(cos t1, cos t2, cos t3)[
sin( t⃗ )

]
3×3

:= diag(sin t1, sin t2, sin t3)

the result of the matrix exponentiation of T by a re-
summation of the series expansion results in the block
diagonal form

exp(−i T ) =

[ [
cos( t⃗ )

] [
i sin( t⃗ )

][
i sin( t⃗ )

] [
cos( t⃗ )

] ] (15)

To identify how local invariants are embedded in this
symmetric matrix, we observe that the determinants of
the blocks are

Ie =Det
[
cos( t⃗ )

]
= cos t1 cos t2 cos t3 (16)

Io =Det
[
i sin( t⃗ )

]
= −i sin t1 sin t2 sin t3

Ia =Det
([

cos( t⃗ )
]T [

cos( t⃗ )
]
+

[
i sin( t⃗ )

]T [
i sin( t⃗ )

])
Ie, Io match the real and imaginary parts of the local
invariant I1, stated in Appendix (A3). Moreover, Ia is
related to the second invariant I2 = 4

(
I2e + I2o

)
−Ia. One

can check that an arbitrary pair of single-qubit rotations,
represented block diagonally in (14), acts on canonical
gates represented block diagonally in (15) via both left
and right multiplication (which correspond to local gates
before and after the canonical gate) keeping Ie, Io, Ia in-
variant. This is because local rotations act on each block
as special orthogonal rotations, for instance M1,M2, and
a transformed block M1 .

[
cos( t⃗ )

]
.M2 has a determi-

nant multiplied by Det (M1) Det (M2) = 1. This is a
statement that in the adjoint representation, canonical
gates are represented as transformations with a notion



9

of length captured by the even Ie and odd Io invariants.
When local rotations act from both the left and right,
the canonical gate blocks are also rotated and summed,
in which case the preservation of angles is captured by
Io.

With the local invariants Ie, Io, Ia identified in terms
of matrix determinants in this representation, we pro-
ceed to write all gates in this representation. Using the
block diagonal representation (15) for the target unitary
Can(t1, t2, t3) = e−iT and basis gates Can(a1, a2, a3) =
e−iA, Can(b1, b2, b3) = e−iB , the block diagonal rota-
tion matrix (14) for the pair of interleaved single-qubit
rotations S, the synthesis ansatz (13) is now written as

e−iT ≡ e−iA S(γ,n, γ̃, ñ) e−iB (17)

The canonical coordinates of T can be determined by
equating the values taken by the three invariants Ie, Io, Ia
acting on both sides. They can also be determined di-
rectly using an inverse map from the invariants to the
canonical coordinates. One such inverse map is provided
in [40] as a cubic equation whose coefficients are deter-
mined by a set of invariants and whose roots are the
canonical coordinates corresponding to the set of invari-
ants.

p(z) = z3 − g3z
2 +

(
4
√
g21 + g22 − 1

)
z + g3 − 4g1 (18)

for g1 = I2e + I2o , g2 = 2iIeIo, g3 = 4(I2e + I2o )− Ia

The roots are ordered z1 ≤ z2 ≤ z3 and determine
the canonical coordinates the target unitary: t1 =
1
2 cos

−1 z1, t2 = 1
2 cos

−1 z2, t3 = 1
2 cos

−1 z3 or t1 =

π − 1
2 cos

−1 z1 if g2 < 0. This is a set of 3 simultane-
ous equations with the location of roots z1, z2, z3 param-
eterized by the invariants Ie, Io, Ia which are functions of
the single-qubit parameters γ,n, γ̃, ñ. Any single qubit
parameters that simultaneously satisfy these all 3 con-
straints provide a valid set of single-qubit gates necessary
for synthesis.

For an analytic solution, we look at special cases where
the rotation matrix S described in (14) has fixed normal
vectors n = ñ = [0, 0, 1], ie orthogonal rotations are only

generated by L3, L̃3 (Z rotations). To get a pair of de-
coupled solutions, we equate the linear combination of
the invariants Ie+ Io, Ie− Io acting on both sides of (17)
to get

cos
(
t(±)

)
= cos

(
a(±)

)
cos

(
b(±)

)
− (19)

sin
(
a(±)

)
sin

(
b(±)

)
cos

(
γ(∓)

)
where γ(∓) = γ1 ∓ γ2, t

(±) = t1 ± t2 with the same sum
and difference in coordinates for a(±), b(±).

The third coordinate is constrained to be t3 = a3 + b3
since the single-qubit rotations are restricted to be only Z
rotations. The constraint equations are decoupled in the
variables t(±), a(±), b(±), which has the crucial implica-
tion that one can independently control γ∓ to synthesize
a set of target coordinates t1, t2 in (17).

The constraint equations in these variables are reduced
to two copies of a single-qubit synthesis problem, each of
which can be solved separately for γ∓. Solutions are
{γ∓ , −γ∓} + 2nπ for integer values of n where

γ∓ = arccos
(
cot

(
a±

)
cot

(
b±

)
− cos

(
t±

)
csc

(
a±

)
csc

(
b±

))
(20)

Existence of real γ∓ implies the existence of a feasible set
of coordinates t(±), which allows one to bound

|a(±) − b(±)| ≤ t(±) ≤ π − |π − |a(±) + b(±)| (21)

Subroutine 1 (Synthesis with 2 basis gates). The syn-
thesis of a target unitary Can(t1, t2, t3) from the avail-
able basis gates Can(a1, a2, a3) and Can(b1, b2, b3) pro-
ceeds by expressing the ansatz (13) in a block diagonal
representation (17). Local equivalence of the composed
sequence with the the target is imposed by calculating lo-
cal invariants as determinants of each block, which gives
a set of equalities. given byof the t By fixing the local
rotation axes as n = ñ = [0, 0, 1], the problem reduces
to . This leads to a decoupled set of constraint equa-
tions, Eq. (19), whose solutions for the required single-
qubit rotation angles are given in closed form by Eq. (20).
These solutions exist whenever the feasibility condition
in Eq. (21) is satisfied.

We summarize the resulting subroutine as follows. The
synthesis of a target unitary Can(t1, t2, t3) from two ba-
sis gates, Can(a1, a2, a3) and Can(b1, b2, b3), is imple-
mented via the gate sequence of Eq. (13), expressed in
the adjoint representation as Eq. (17). For the choice
of normal vectors n = ñ = [0, 0, 1], the required single-
qubit rotation angles are obtained from a decoupled set of
constraints given in Eq. (19), with solutions in Eq. (20).
This construction is valid when the feasibility condition
in Eq. (21) is satisfied. We refer to this procedure as the
synthesis subroutine, which will be applied in subsequent
constructions.

Solutions to the problem of synthesis using a sequence
of 2 basis gates (13) can be used for longer sequences. For
generic canonical gates one can use(18) with a3 = b3 = 0
analytically controls of rotations in the t1 − t2 plane us-
ing and is useful for canonical gates same set of steps
that allow rotations in the t1 − t2 plane by a choice of
n = ñ = [0, 0, 1] can be formulated in t2 − t3 or t3 − t1
planes by picking unit normal vectors n = ñ perpendicu-
lar to these planes, giving a similar set of parameterized
solution as (20). To summarize the complete subroutine
that allows the use of a sequence of 2 fractionally entan-
gling basis gates (13), one first finds the smallest basis
gates that satisfy the criterion (21). Then the single qubit
gates are determined via(20). With another sequential
rotation performed in the t2 − t3 plane or t3 − t1 plane,
the points within the interior of the tetrahedron can be
reached.

We now look at specific instances of this general
method that are applied to the single parameter canon-
ical gates that were experimentally constructed and
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added to the basis gate set. We remind the reader

that the single-parameter 2-qubit rotations XX(c
(1)
eff ) =

Can(c
(1)
eff , 0, 0) and XX(c

(2)
eff ) = Can(c

(2)
eff , 0, 0). With

the goal of maximizing the range of canonical coordi-
nates of a target unitary Can(c1, c2, 0), conjugation by a
single qubit gate implements a permutation on the sec-

ond basis gate making the ansatz Can(c
(1)
eff , 0, 0) (s ⊗

s̃) Can(0, c
(2)
eff , 0). The 6 single qubit gates that imple-

ment permutations and permutations with sign-flips on
two coordinates are called Weyl reflections and are de-
scribed in Appendix B. The ansatz has the following set
of feasible solutions

c
(1)
eff + c

(2)
eff ≥ c1 + c2, c

(1)
eff − c

(2)
eff ≤ c1 − c2. (22)

The explicit set of solutions for the single qubit angles
is given in Appendix C in the form of the angles of the
single qubit gates. For the case of a sequence of the three
single parameter canonical gates with effective rotations

c
(i)
eff used to synthesize a target unitary block with canon-
ical coordinates (c1, c2, c3), the feasibility condition that
needs to be satisfied is:

c
(1)
eff + c

(2)
eff ≥ c1 + c2, c

(1)
eff − c

(2)
eff ≤ c1 − c2, c

(3)
eff ≥ c3.

(23)
The explicit set of angle parameterizing s1, s2 is given in
Appendix C. We note that if the gateset contains a CX
gate (which is locally equivalent to Can(π/2, 0, 0)), these

conditions can always be satisfied via c
(1)
eff = c

(2)
eff = c

(3)
eff =

π/2 which is a reduction to the known result that any
2-qubit unitary can be synthesized with at-most 3 CX
gates.

We now briefly compare our approach to synthesis with
those in the existing literature that also make use of
KAK decompositions. If one has a continuous single pa-
rameter entangling gate set of the form XX(θ) (equiva-
lently ZX(θ) or ZZ(θ)), one can apply it sequentially 3
times with each instance being tuned to c1, c2, c3, respec-
tively. This leads to a simple one-to-one replacement of
the canonical coordinates (c1, c2, c3) of the Ublock to be
synthesized and is done in [26], [41]. In contrast, our al-
gorithm applies a sequence of entangling gates with fixed
fractional angles whose canonical coordinates are differ-
ent from the coordinates to be synthesized. Using a dis-
crete set of single parameter fractionally entangling gates
for unitary synthesis is discussed in [27], our approach has
a focus on developing a set of tools that enable synthesis
using multi-parameter fractionally entangling gates and
employ a different set of mathematical techniques i.e. the
use of local invariants as opposed to monodromy meth-
ods.

IV. EXPERIMENTAL ALGORITHMIC
BENCHMARKING

We now demonstrate the advantage of using efficient
gates in the execution of benchmarking quantum algo-

rithms that are run on the 127-qubit processor IBM Bris-
bane. We analyze the performance of the one-hot inverse
Quantum Fourier Transform algorithm and a Trotterized
simulation of the transverse field Ising model over a range
of circuit widths. We ensure that the test circuits differ
only by substitution of entangling gates. The test circuit
is executed on the same qubit layout, with the same num-
ber of shots, and with identical run-time settings com-
pared to the control version that uses only default gates.
The transpilation process differs only in the final stage;
in one case, a re-synthesis of 2-qubit unitary blocks is
done with the option of using efficient gates in addition
to default backend gates. Identical measurement-error
mitigation is applied to the raw counts for all circuits.
We refer the reader to Algorithm 1 for a summary of the
characterization routine and Algorithm 2 for a summary
of the gate construction routine that was specifically im-
plemented in these experiments.

A. Quantum Fourier Transform

The inverse Quantum Fourier Transform is part of
standard algorithmic benchmarking suites [42] and is an
important subroutine of many important quantum algo-
rithms such as Quantum Phase Estimation. By including
an initial layer of single-qubit rotations, the algorithm
can be made “one-hot”; that is, its ideal response is a
single target bitstring with 100% probability. The met-
ric for evaluation that we use is the success probability
of obtaining the target bit string.
In Figure 4, we observe an increasing advantage in us-

ing shorter gates as we go to higher circuit depths, while
also suppressing coherent errors through our gate char-
acterization. This is an end-to-end execution with an ad-
ditional entangling gate XX (π/4 + ϵi) available on 85%
of the qubit pairs on the device, in addition to the de-
fault CX gate. The 2 qubit rotation angle for the gate
has the subtle feature of being different across different
qubit pairs, and is denoted by π/4 + ϵi, with ϵi denoting
the small correction to the rotation angle that is unique
to each qubit pair, and is determined from the character-
ization experiments. The synthesis motifs that are useful
for these algorithms are depicted via the set of feasible
regions depicted in Fig 3. The structure of the QFT al-
gorithm predominantly has increasingly smaller 2-qubit
rotations, which can be synthesized using the usage of 2
XX (π/4 + ϵi) gates. Moreover, a common circuit motif
involves a swap-gate followed by such a 2-qubit controlled
rotation with angle θ, in which case these are consoli-
dated to provide a target unitary block with coordinates
(π/2, π/2, θ). In such cases as well, one can use a combi-
nation of 2 CX gates and 1 efficient gate for synthesis of
the target block.
We observe an improvement in algorithmic success

probability of up to 3 X for up to N = 26 qubits,
with the improvement increasing with increasing circuit
width. Remarkably, the most likely bitstring no longer
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FIG. 4: Experimental comparison of inverse quantum Fourier transform circuits run on ibm brisbane, with identical
execution workflows except for the usage of efficient gates in addition to backend default gates versus usage of only
backend default gates. The target bitstring is 101010 . . . 10. a Observed likelihood of obtaining the target bitstring
as a function of circuit width. b-d Histograms of observed results for three circuit widths N = 16, 22, 24
respectively. Only the 10 most frequently observed bitstrings are depicted. In all cases, the success probability is
substantially boosted by using efficient gates. For the 24-qubit QFT, the use of efficient gates allows the correct
result to emerge above the noise as the most likely result. Error bars on the target bitstring represent shot noise.
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implementation uses N = 25 qubits connected on a one dimensional line. a. A single Trotter layer. The ZZ(θ) gates
are synthesized using 2 efficient gates XX(π/4) in contrast with 2 ECR gates in the default case. b. Observed
expectation value of the average Z magnetization. c. Observed expectation value of the average Y magnetization.
The resulting trajectories using efficient gates are significantly closer to the ideal simulation of the Trotterized
evolution compared to the circuits that use only default gates with a 9 times smaller MSE for ⟨Y ⟩ and a 5 times
smaller MSE for ⟨Z⟩).

co-coincides with the target bitstring for the N = 24 problem instance when only default gates are used, but
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is not selected as the target when the new basis gates are
used. Since the structure of the QFT algorithm predom-
inantly has increasingly smaller 2-qubit rotations, this
benchmark demonstrates the quality of characterization
procedure to be sufficient in constructing high-fidelity
XX (θ) gates that are useable in algorithmic contexts.

B. Hamiltonian Simulation

The task of simulating the quantum dynamics of
Hamiltonians of interest is a promising near-term ap-
plication with the potential to showcase the utility of
quantum computers [43]. Simulating Hamiltonians us-
ing Trotter-Suzuki product formulas naturally leads us
toward the need of being able to have a calibrated en-
tangling gate set of shorter duration without sacrificing
fidelity.

We simulate the 1-dim quantum transverse field Ising
model with Hamiltonian

H = −J
∑
i

ZiZi+1 + h
∑
i

Xi (24)

Here J is the coupling between nearest neighboring spins
and h is the global transverse magnetic field strength. We
use the second-order Trotter Suzuki product formulas to
simulate the evolution for the full time duration t = ndt
by breaking it into n trotter steps. Fig. 5 (a) shows a
circuit implementation of each trotter step.

We implement the transverse-field Ising model Hamil-
tonian with N = 25 qubits connected on a one-
dimensional line topology, with parameters J = h = 1.
Each circuit represents an evolution for time t = ndt,
where dt = π/15 ∼ 0.209 and n is the number of Trotter
steps. The compiled circuits require 48n default ECR
gates (two per ZZ(θ) operation), which can be replaced
by efficient gates.

In Fig. 5, we plot the observed expectation value of
the average Y and Z magnetization. The observed expec-
tation values using efficient gates are significantly closer
to the ideal simulation of the trotterized evolution com-
pared to circuits that use only default gates with a 9
times smaller MSE for ⟨Y ⟩ and a 5 times smaller MSE
for ⟨Z⟩).

V. SUMMARY AND DISCUSSION

In this work, we have presented an automated and
resource-efficient technique to diversify the entangling
gate set of a quantum device by adding an additional
entangling gate for each qubit pair across the entire de-
vice. The added 2-qubit gates are less entangling com-
pared to the maximally entangling CX gate, which is
already present in the gate set. This is done while en-
suring the new gates have shorter durations and main-
tain high fidelities. By using unitary synthesis schemes
that efficiently leverage these gates, the compiled circuits

are shorter in duration, accumulate less coherent error,
and are executed with higher fidelity. This allows for
a more efficient utilization of the finite-qubit coherence
time available on the device.
Calibration and system identification in superconduct-

ing devices have challenging problems, an important one
being device parameter drift over time [44]. A crucial
constraint on the calibration time is that it should be
small compared to the time scale over which the system
drifts in addition to the time it takes to perform the ex-
periments. This becomes more important as the scale of
these devices becomes larger.
Our approach tackles this, by making the procedure of

adding a new entangling gate take up a small amount
of device time by performing highly time-efficient of-
fline gate Hamiltonian characterization, rather than on-
line closed-loop gate calibration. Instead of calibrating a
control pulse to reach a target unitary, we focus on accu-
rately and quickly characterizing the control pulse. The
result is a gate definition, which is a map between the
control pulse that is executed and a model of the gen-
erating Hamiltonian it implements. As long as the gate
definition is used in experiments within the parameter-
drift timescale, this map is a faithful one and the Hamil-
tonian accurately describes the dynamics generated by
the gate in the 2-qubit subspace it acts on.
An effective Hamiltonian analysis of the microscopic

model of the device plays an important role in providing
the allowed set of terms that can appear in the model
of the generating Hamiltonian of the unitary, empha-
sizing a hierarchy in the strengths of these terms [35].
We take this form of the effective Hamiltonian as an
ansatz, promoting the strengths of all terms that are
present to learnable parameters with a bounded range
of expected strengths. The actual generating Hamilto-
nian is then precisely determined using a set of tailored
error-amplification characterization sequences.
Our approach offers a different perspective, compared

to traditional methods in gate calibration and design
[45]. A new 2-qubit basis gate is added to the gate-
set whose unitary is a priori only approximately known,
based on how the backend default gate pulse was de-
formed or scaled. QPU time is used judiciously by per-
forming a precise characterization routine, instead of tun-
ing the pulse parameters to achieve a response that pre-
cisely realizes a target unitary operation. Importantly,
to make such a non-standard gate definition (the uni-
tary generated by Heff (νab)) usable by the compiler, the
pulse is sandwiched with single qubit gates that perform
local rotations to create a new composite gate unitary

Can
(
c
(1)
eff , c

(2)
eff , c

(3)
eff

)
where the local rotations accomplish

the task of converting the non-standard unitary described
by the set of parameters νab that describe the model of
the effective Hamiltonian into 2-qubit rotations described
by atmost 3 parameters. This composite gate can now be
considered a basis gate in the sense that our compiler can
use it for circuit synthesis, in addition to a default CX
gate, with the option to repeat the procedure with a new
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pulse to add a discrete set of partially entangling basis
gates to the gate set. For re-synthesis of generic circuits
in terms of these composite gates, we decompose unitary
blocks that appear in the circuit and use a synthesis tech-
nique that allows unitary synthesis of each block using

a discrete set of basis gates Can
(
c
(1)
eff , c

(2)
eff , c

(3)
eff

)
. These

synthesis motifs efficiently use the 2-qubit rotation gener-
ated by the nonstandard pulse generated by Heff (νab), to
return final compiled circuits with shorter gate sequences
and suppressed coherent errors, such as crosstalk.

We experimentally demonstrate our procedure by char-
acterizing the effective Hamiltonian of direct scaled cross-
resonance pulses that are constructed by deforming the
echoed cross-resonance pulses that generate the back-
end provided CX gate. The routine to characterize one
additional gate on all coupled qubit pairs on the 127-
qubit device ibm brisbane is completed in under 3 min of
QPU time, resulting a new basis gate Can (ceff, 0, 0) =
XX (π/4) added to 85% of the 144 coupled qubit pairs.
The classical computational overhead of this technique is
kept low as model optimizations across different 2-qubit
pairs are done in parallel. To demonstrate that the pre-
sented unitary synthesis schemes can take advantage of
the enriched gate set to efficiently synthesize circuits, we
benchmark a standard algorithm, the hot inverse quan-
tum Fourier transform (QFT) [42]. The benchmarking
protocol only distinguishes between 2 sets of circuits in
whether a new basis gate is available in addition to a
default CX gate, keeping all other elements of circuit ex-
ecution the same. The procedure reveals up to a 3X im-
provement in the algorithmic success probability for up
to N = 26 qubits and demonstrates that the XX (π/4)
gates are sufficiently high quality to improve fidelity in
algorithmic contexts.

Our second experimental algorithmic benchmark is an
implementation of the trotterized Hamiltonian simula-
tion applied to the one-dimensional transverse field ising
model on a line [46]. The benchmarking is done for a 25
qubit long chain with a trotter depth of upto 15 steps.
At 15 trotter steps, the simulation uses up to 600 basis
gates XX (π/4) and the time dynamics of averaged ob-
servables is compared to an ideal classical simulation. We
observe an improvement of upto 9 times in the MSE in

the calculation of expectation values of observables, with
the dynamics closely resembling the classical simulation.
Hamiltonian simulation algorithms are an important

class of near term algorithms with the potential to get
large performance benefits from high fidelity 2-qubit
gates with natively smaller rotation angles. For trot-
terized Hamilonian simulations to compete with exist-
ing classical approaches, in addition to a large number
of qubits, it is necessary to perform simulations for in-
creasingly longer times while keeping a sufficiently high
accuracy. This requires being able to perform these sim-
ulations not only for longer circuit depth, but also with
lower trotterization error. This implies that the Hamilto-
nian generating the time evolution across each time slice
needs to be implemented with smaller coefficients and
the availability of an enriched gate set that can imple-
ment high fidelity small 2-qubit rotations XX (ceff) in
such scenarios, is very useful. It allows for an increase in
the the algorithmic depth to which these algorithms can
be implemented for the same qubit coherence time.
While there are cases where violation of the generating

Hamiltonian ansatz for 2-qubit unitaries, leads to non-
convergence in model learning, we find that it converges
for the majority of 2-qubit pairs on the devices we con-
sidered. Furthoermore, the problem of device parameter
drift with time puts a limit on the duration of time for
which the gate definition our characterization produces
is a valid or useful one. Due to the constraints of ac-
cessing commercial devices on the cloud, we were unable
to systematically study the temporal dependence of our
characterization and leave this study to future work.
This work underlines useful techniques that enable the

execution of such near term quantum algorithms with
high fidelity. Importantly, it showcases that significant
performance gains can be obtained and limitations im-
posed by current quantum computers can be lifted, by
developing solutions purely in software. The co-design
of pulse level gates and compiler architecture is a strik-
ing example of research in this direction, with significant
potential for innovation.
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Appendix A: Local equivalence (review)

Theorem 2 from [38] provides a procedure to get the
complete set of local invariants of a 2-qubit gate U . To
calculate these invariants, one needs the magic matrix
Q which transforms computational basis states into the
Bell basis.

Q =

1 0 0 i
0 i 1 0
0 i −1 0
1 0 0 −i

 (A1)

In this basis, the unitary is first transformed into UB =
Q†UQ, with the spectrum of the matrix m = UT

BUB

being invariant under local transformations. The coeffi-
cients of the characteristic polynomial of m can be used
to extract the invariants, which are

I1 (U) =
1

4
tr(m), I2 (U) =

1

4

(
tr2(m)− tr(m2)

)
(A2)

These take the following values for 2-qubits gates
U that are locally equivalent to the canonical gate
Can(c1, c2, c3):

I1 = cos c1 cos c2 cos c3 − i sin c1 sin c2 sin c3 (A3)

I2 = cos(2 c1) + cos(2 c2) + cos(2 c3) (A4)

I1 is complex, which provides 2 real invariants, while I2
is a real number, which provides a single real invariant.

Appendix B: Weyl reflections

Weyl reflections are useful tools for synthesizing 2-
qubit unitaries specified via their canonical coordinates
[37]. We denote a set of 6 single qubit gates pij , pij∗
where i, j ∈ 1, 2, 3 whose action via conjugation on a
canonical gate Can(c1, c2, c3) implements 6 transforma-
tions: 3 permutations and 3 permutations along with
sign flips. We denote the transformation acting on the
indices ij to be the qubits being permuted and ij∗ denote
a sign flip and permutation on ij. For instance, acting on
Can(c1, c2, c3), a permutation exchanging 1, 2 with and
without a sign-flip is implemented by

p12 Can(c1, c2, c3) p
†
12 =Can(c2, c1, c3) (B1)

p12∗ Can(c1, c2, c3) p
†
12∗ =Can(−c2,−c1, c3)

These are implemented in a circuit via the single qubit
gates

p12 = exp (iπ/4 (I ⊗ Z + Z ⊗ I)) (B2)

p12∗ = exp (iπ/4 (I ⊗ Z − Z ⊗ I))

All 4 remaining reflections are implemented by identi-
fying the permutation indices 12, 23, 13 with the single
qubit gates Z,X, Y . These reflections and permutations
are useful in steering trajectories to cover larger regions
of the Weyl tetrahedron. They were used by [37] to prove
that 3 applications of a continuous family of 2-qubit gates
parameterized by t, Can(t c1, t c2, t c3), can implement
universal quantum computation, ie. cover the entire vol-
ume of the Weyl tetrahedron.

Appendix C: Circuit synthesis using single
parameter two-qubit gates

We look in more detail at simplest example of syn-
thesizing a target unitary using an available set of gates

Can(c
(1)
eff , 0, 0) and Can(c

(2)
eff , 0, 0), which in more con-

ventional notation are the same as single parameter 2-

qubit rotations XX(c
(1)
eff ), XX(c

(2)
eff ). We would like to

construct the feasible set of coordinates that can be syn-
thesized using such a gate-set, The single qubit gates
that implement Weyl reflections B allow one to imple-
ment permutations on the coordinates of either gate,

so that a gate Can(c
(2)
eff , 0, 0) can be transformed into

Can(−c
(2)
eff , 0, 0), Can(0,±c

(2)
eff , 0) or Can(0, 0,±c

(2)
eff ).

This allows these gates to be placed in configurations
that maximize the feasible region.

We first look at the problem of finding the feasible set
of canonical coordinates (c1, c2, c3) that can be reached
by 2 such gates with any 2 single qubits s1, s2 inserted
between them. The ansatz is of the form

Can(c1, c2, 0) = Can(c
(1)
eff , 0, 0) (s1 ⊗ s2) Can(0, c

(2)
eff , 0)

The feasible set of of coordinates are:

c
(1)
eff + c

(2)
eff ≥ c1 + c2, c

(1)
eff − c

(2)
eff ≤ c1 − c2. (C1)

The single qubit gates are si = Z(ϕi/2) with the angles
given by:

cosϕ1 =− cot c
(1)
eff cot c

(2)
eff + cos (c1 − c2) csc c

(1)
eff csc c

(2)
eff

cosϕ2 =cot c
(1)
eff cot c

(2)
eff − cos (c1 + c2) csc c

(1)
eff csc c

(2)
eff

These solutions can be thought of as rotations in a 2-
dimentional plane, with a fixed co-ordinate c3 = 0, that is
not controlled via these gates. The above set of solutions
are equivalent to a set of solutions in which c3 is a non-
zero constant before and after the application of 2 gates.

In order to reach a target unitary described by 3
canonical coordinates (c1, c2, c3), one needs to apply 3
gates. This is because a sequential application of a set
of 2-dimensional rotations in the c1-c2 plane followed
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by the c2-c3 plane allows synthesis to a target unitary
with all three nonzero coordinates (c1, c2, c3). This can
be achieved an ansatz of the following form, with the
4 single qubit gates s1, s2, s3, s4 parameterized as s1 =
Z(ϕ1/2), s2 = Z(ϕ2/2), s3 = X(ϕ′

1/2), s4 = X(ϕ′
2/2)

Can(c1.c2, c3) = Can(c
(1)
eff , 0, 0) (s1 ⊗ s2)Can(0, c

(2)
eff , 0)

(s3 ⊗ s4) Can(0, 0, c
(3)
eff )

In this case, there is freedom in the coordinates of the
second step, since a single parameter family of coordi-
nates can be further synthesized from this intermediate
step. We parameterize this coordinate by δ, and the fea-
sible region is

c
(1)
eff + δ ≥ c1 + c2 ,

c
(1)
eff − δ ≤ c1 − c2 ,

c
(2)
eff + c

(3)
eff ≥ δ + c3 ,

c
(2)
eff − c

(3)
eff ≥ δ − c3 .

with the following set of angles:

cosϕ1 =
(
− cot c

(1)
eff cot δ + cos (c1 − c2) csc c

(1)
eff csc δ

)
cosϕ2 =

(
cot c

(1)
eff cot δ − cos (c1 + c2) csc c

(1)
eff csc δ

)

and

cosϕ′
1 =

(
− cot δ cot c

(3)
eff + cos (c2 − c3) csc δ csc c

(3)
eff

)
cosϕ′

2 =
(
cot δ cot c

(3)
eff − cos (c2 + c3) csc δ csc c

(3)
eff

)

Appendix D: Conventions for mapping error
amplifying sequence measurements to observables

For book-keeping of the results of the error amplify-
ing sequences in Figure 2(a-d), we describe the conven-
tions used to map the set of probe observables ⟨Oi⟩ to
experimental measurements. The conventions are as fol-
lows: the reconstruction sequence in 2 (a-d) correspond
to α = {0, ..., 3}. The final state ρ(α,N) is measured after
N repetitions. The expectation value of the single qubit
Z operator at qubit location k = {0, 1} (denoting the
control or target qubit) is measured via

⟨O (N)⟩2α+k = Tr
(
ρ(α,N)Zk

)
(D1)

Appendix E: Runtime estimate of device wide
characterization

Producing an enriched gateset requires additional cir-
cuit executions for characterization of the added gates.
For a practical and useful scheme, this overhead should
be relatively small. Therefore, it is useful to estimate
the time taken to characterize a new set of gates to be
added across the entire device. For Ntot number of cir-
cuits that need to be executed on a device, the total time
is Ntot × 1

rep-rate where rep-rate is the fixed number of

circuit executions per-second for the machine. Ntot gets
the following contributions:

Ntot = Nprobe-circuits ×Nshots ×Ntot-reps ×Ncovering factor

• Nprobe-circuits : number different types of character-
ization circuits per qubit pair.

• Ntot-reps : number of gate repetitions per circuit
• Ncovering-factor : number of independent experi-
ments needed to cover each entangling pair on the
device. The minimum value this can take is the
minimum edge coloring of the device topology (3
for heavy-hex).

For IBM’s reported rep-rate = 4000, and for
our choices of Nprobe-circuits = 4, Ntot-reps = 8 and
Ncovering factor = 4, we get a full device characterization
QPU time of 150s.
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