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Main results

Spectrum of quantum KdV hierarchy in the semi-classical limit
with Dymarsky, Sugishita, Pavlenko
[arXiv:2208.01062]

Information geometry and holographic correlators
with Sivaramakrishnan, Bohra
[JHEP 04 (2022) 037]

Classical codes and chiral CFTs at higher genus
with Henriksson, McPeak
[JHEP 05 (2022) 159]

Narain CFTs and Quantum Codes at Higher Genus
with Henriksson, McPeak
[arXiv:2205.00025]
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Other work (not included in thesis)

A quantum annealing based algorithm to calculate distance of
a Quantum Error Detection Code
with Dymarsky, Ismail
[in prep]

Characterizing Error Mitigation by Symmetry Verification in
Quantum Approximate Optimization Algorithm (QAOA)
with Larson, Galda, Shaydulin
[2204.05852]

Understanding the role of boundary conditions in Modular
Hamiltonian of conformal scalar field
with Dymarsky, Shapere
[internal note]
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When does an isolated quantum system thermalize?

Eigenstate Thermalization Hypothesis (ETH) gives us a
criterion
Look at matrix elements of a probe observable O in energy
eigenstates

⟨Ei |O|Ej⟩ = δij fO(Ei ) + e−S(Ei+Ej )/2g(Ei ,Ej)rij

Expectation values of O are given by the canonical ensemble
at late times

⟨ψ(t)|O|ψ(t)⟩ = Tr Oe−βH

[Srednicki ‘94, Deutsch ‘91]
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What happens when the system has many conserved charges
Q2k−1

Generalized Eigenstate Thermalization Hypothesis (GETH)
Look at matrix elements of a probe observable O in mutual
eigenstates |Ej⟩ of all the charges

⟨Ei |O|Ej⟩ = δij fO(Ei ) + e−S(Ei+Ej )/2g(Ei ,Ej)rij

Expectation values of O are given by the Generalized Gibbs
Ensemble (GGE) at late times

⟨ψ(t)|O|ψ(t)⟩ = Tr O e−
∑

k µ2k−1Q2k−1

[Rigol, Dunjko, Olshanii ’08]
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qKdV Hierarchy in 2d CFTs

In any integrable 2d CFT, you can construct an infinite set of
mutually commuting conserved charges
classical kdV hierarchy

Qcl
1 =

∫
dϕu (ϕ) , Qcl

3 =

∫
dϕu (ϕ)2 ,

Quantum kdV hierarchy

Q1 =

∫
dϕT , Q3 =

∫
dϕ : T 2 :,
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qKdV Hierarchy in 2d CFTs

These charges give us flows in phase space

u̇ = {Qcl
1 , u}, u̇ = {Qcl

3 , u} = 6u∂u − ∂3u

Quantum version

Ṫ = [Q1,T ],

Ṫ = [Q3,T ] = −3∂(TT )− c − 1
6

∂3T

In a seminal work, the existence and relation to integrability
was shown

[Q2k−1,Q2l−1] = 0
[Bazhanov, Lukyanov, Zamalodchikov ‘96]
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Eigenvalue problem for qKdV charges

The states L−m1 ...L−mk
|∆⟩ form a basis of the Verma module

There is a particular basis in the Verma module which is
eigenbasis of qKdV charges

|ψ⟩ = L−m1 ...Lmk
|∆⟩+ ...

Q2n−1|ψ⟩ = λ2n−1|ψ⟩

nk is defined in the free boson representation of the CFT:
nk counts the number of times k appears in the set {mi}

|{nk},∆⟩ = |{mi},∆⟩

Example
L2
−2L−1 is n2 = 2, n1 = 1
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Main Result: Spectrum of qkdV charges

The calculation of the eigenvalues λ2n−1 for all charges Q2n−1
in a perturbative 1/c expansion.

Q2n−1 = ∆n + cn−1
∑
k

nk f1(k,∆)

+ cn−2

∑
k

n2
kg2(k ,∆) +

∑
k,p

nknpg1(k , p,∆) +
∑
k

g0(k ,∆)


+ O(cn−3)

Obtained closed form expressions for f1, g2, g1, g0 for all n.
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Broad strategy

We will first calculate the classical KdV charges Qcl
2n−1

Large c expansion in the quantum theory ∼ expansion in
action variables Ik in the classical theory.

Qcl
2n−1 = hn +

∑
k

f1(k)Ik +
∑
k

f2(k)I
2
k + ...

Semi-classical quantization rule::
Multiply Qcl

2n−1 by
(

c
24

)n and

Ik −→ 24
c

(
nk +

1
2

)
, h −→ 24

c

(
∆+

c

24

)
Constraint from Modular covariance

⟨Q2n−1⟩β = modular covariant with weight 2n
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Semi-classical quantization and large c

Holographically relevant 1/c expansion
Intuition for semi-classical quantization: action variables for
hydrogen atom quantized
Additional constraints to completely fix quantum result up to
2nd order in expansion: modular covariance/action of Q on
primaries

[Maloney, Ng, Ross and Tsiares ’19]
[ Dorey, Dunning, Negro, Tateo’19]
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Novikov’s method

[Novikov ‘74]

To study solutions u(x) of

c

24
{Q2k−1, u} = 0

Study the spectral problem of

− d2

dx2ψ + uψ = λψ

Inverse scattering problem: Given spectrum of the
Schrodinger equation
Try and reconstruct the potential u(x)
This problem was solved by Novikov for periodic u(x).
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Turn Novikov’s analysis Perturbative

[Novikov ‘74]

Perform the appropriate phase space integrals perturbatively

Ik =
i

π

∮
ai

dp log λ

The conserved quantities

Q2n−1 = − Γ(n + 1)(Γ(1/2))
(Γ(n + 1/2))(2πi)

∮
∞

dpλn−1/2

Our approach: Do it perturbatively in distance between λi
Reduces higher genus phase space integrals to torus ones
which are tractable.
It allows us to get the expansion

Qcl
2n−1 = hn +

∑
k

f1(k)Ik +
∑
k

f2(k)I
2
k + ...
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How to do this for higher genus surfaces using pictures

Perturbative parameter: distance between roots of hyper-elliptic
curve
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Conclusion

Large c spectrum of qkdV from semi-classical quantization
Developed methods to calculate classical spectrum
Qcl

2n−1 = hn +
∑

k f1(k)Ik +
∑

k f2(k)I
2
k + ...

to all orders
Raises questions:
What are the modular properties of ZGGE?
Can you use this spectrum to find universal hydrodynamic
properties of integrable 2d CFTs?
kdV charged black holes
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Modular invariance of CFT partition functions

(tE , x) ∼ (tE + β, x + 2π) is the same as z ∼ z + 1 ∼ z + τ

Z =
∑

h,h̄ ∈ states

qh−
c
24 q̄h̄−

c̄
24 , where q = e2iπτ , q̄ = e−2iπτ̄ .

The partition can be sliced in different ways
Modular invariance:

Z

(
aτ + b

cτ + d
,
aτ̄ + b

c τ̄ + d

)
= Z (τ, τ̄) ,

(
a b
c d

)
∈ SL (2,Z)
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Modular bootstrap

Non-perturbative method to determine space of allowed
theories from symmetry and unitarity
Demand Z (τ, τ̄) is invariant under:

T : τ −→ τ + 1, S : τ −→ −1
τ

Z (τ, τ̄) = χvac (τ, τ̄) +
∑
h,h̄

d
(
h, h̄

)
χh,h̄ (τ, τ̄)

Hellerman bound for pure 3d gravity : What is the largest gap
∆1 compatible with modular invariance (assuming Virasoro
characters) ? ∆1 ∼ c/6 + 0.474
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Motivation: taking bootstrap programme to higher genus

Constraints easy to solve
Using the correspondence between codes and CFTs, examples
were constructed of "fake" theories which are modular
invariant, can be expanded in (Virasoro) characters with
non-negative integral coefficients and with unique vacuum
Many examples of non-isomorphic theories sharing the same
partition function. Modular bootstrap cannot tell them apart.
Non-chiral version of Milnor’s famous example: Can you hear
the shape of a drum?

[Dymarsky, Shapere ’21]
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Classical code

What is an [n, k , d ] classical linear code?
Collection of 2k code-words
Each codeword c ∈ F n(2)
A bit-flip on ⌊(d − 1)/2⌋ bits can be corrected

Weight w(c) ∼ no. of 1’s

An example: Hamming [8,4,4] code :
1011 is encoded into 01100110
0000 is encoded into 00000000
Upto 4 bits can be corrupted
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Code CFTs: a testing ground for Modular Bootstrap
approach to solve CFTs

Associated with a classical code is an enumerator polynomial:

WC(x0, x1) =
∑
c∈C

x
n−w(c)
0 x

w(c)
1 .

Construction A by Leech and Sloane relates a Euclidean
Lattice Λ(C) to a code C

ΘΛ(C)(τ) = WC(θ3(q
2), θ2(q

2)),

This allows one to define a 2-d CFT with central charge c
living on this lattice, with torus partition function

Z (τ) =
ΘΛ(τ)

η(τ)c
.
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Classical linear self-dual code –> Euclidean self-dual lattice

Associated with a classical code is an enumerator polynomial:

WC(x0, x1) =
∑
c∈C

x
n−w(c)
0 x

w(c)
1

Associated with a Euclidean lattice is lattice theta series:

ΘΛ(τ) =
∑
v∈Λ

qv
2/2 , q = e2πiτ

Construction A by Leech and Sloane relates a Euclidean
Lattice Λ(C) to a code C

ΘΛ(C)(τ) = WC(θ3(q
2), θ2(q

2))

"code CFT" partition function

Z (τ) =
ΘΛ(τ)

η(τ)c
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A testing ground for Bootstrap approach to solve CFTs

Modular transformations are written very simply in code
variables:

S : x0 7→ x0 + x1√
2

, x1 7→ x0 − x1√
2

T : x1 7→ ix1

These can be easily solved for and solutions to this for c = 24
give 190 possible code CFTs
But there are only 9 known Lattice CFTs you get by
Construction A
How do you rule out the rest via symmetries?
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Higher genus modular invariance

Define Period matrix :∮
ai

ωj = δij ,

∮
bi

ωj = Ωij .

Z (Ωij) is invariant under

Ω 7→ Ω̃ = (AΩ+ B)(CΩ+ D)−1,

(
A B
C D

)
∈ Sp(2g ,Z)
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Genus 2 lattice theta series

Genus 2 lattice theta series is well defined:

Θg=2
Λ (Ω) =

∑
v⃗1,v⃗2∈Λ

q
v⃗1·v⃗1

2 r v⃗1·v⃗2s
v⃗2·v⃗2

2 ,

with the the modular parameters q, r , s are defined as

q = e2πiΩ11 , r = e2πiΩ12 , s = e2πiΩ22 .

So is the bi-weight enumerator polynomial:

W
(2)
C (x0, x1, x2, x3) =

∑
c1, c2 ∈C

x
n+c1·c2−w(c1)−w(c2)
0 x

w(c2)−c1·c2
1 x

w(c1)−c1·c2
2 x

c1·c2
3 .

This screams at you: Apply Construction A here
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Higher genus transformations in code variables

The theta map: theta constants of second order characteristic

xi −→ θ

[
c⃗i/2
0⃗

]
(0, 2Ω)

Genus 2 modular transformations:

Tg=2 : x0 7→ x0, x1 7→ x1, x2 7→ ix2, x3 7→ ix3,

Rg=2 : x0 7→ x0, x1 7→ x3, x2 7→ x2, x3 7→ x1,

Dg=2 : x0 7→ x0+x2√
2
, x1 7→ x0−x2√

2
, x2 7→ x1+x3√

2
, x3 7→ x1−x3√

2

Degeneration limit: identity exchange: polynomials factorize:

W
(g=2)
C (xi ) 7→ W

(1)
C (xi )W

(1)
C (yi )

where

x0 → x2
0 , x1 → x0x1, x2 → x0x1, x3 → x2

1
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Algorithm

⇓
a1 a2

b1 b2

Write all possible homogeneous polynomials consistent with
symmetries
Under Degeneration polynomials factorize into consistent
genus 1 partition functions:

W
(g=2)
C (xi ) 7→ W

(1)
C (xi )W

(1)
C (yi ),

where

x0 → x2
0 , x1 → x0x1, x2 → x0x1, x3 → x2

1 .

Demand positive degeneracy of codewords
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Chiral results

Example: Chiral c = 24:
There are 190 genus 1 polynomials.
29 come from consistent genus 2 polynomials
21 at genus 3.
9 Codes and 24 self dual lattices
We also reproduce the above results, and provide an
interpretation in terms of degeneration of Siegel modular forms
upto genus 3.

Θg=2
Λ = E 3

4 + a1ψ12 + a2χ12.

[Runge ’94]
[ Gaberdiel, Volpato ’08]
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Non-Chiral results

genus 2 modular transformations act linearly on 10 code
variables
Example: Code CFTs with n = 4:
At genus 1: 20 polynomials.
At genus 2: 45 polynomials but only 10 factorize.
9 of these polynomials derive from real codes, leaving only one
fake
Determined the full polynomial ring that generates invariant
polynomials
Non-chiral resolution of Milnors example: all n = 7 and n = 8
iso-spectral theories have different genus 2 partition functions
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Great people I worked with!

“All that is gold does not glitter,
Not all those who wander are lost;
The old that is strong does not wither,
Deep roots are not reached by the frost." - J.R.R. Tolkien, The Fellowship of the Ring

Anatoly Dymarsky
Sotaro Sugishita, Nagoya University
Brian McPeak and Johan Henrikson, University of Pisa
Allic Sivaramkrishnan and Hardik Bohra, University of
Kentucky

String theory group: Sumit Das, Al Shapere
Condensed matter theory group: Ganpathy Murthy, Ribhu
Kaul

Undergraduate mentors at IISER Pune: Arjun Bagchi,
Nabamita Banerjee


